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The antiplane problem of a crack whose edges touch planes where the constants of elasticity change is 

considered. The special feature of this problem is that it reduces to a singular integral equation whose 

kernel contains two fixed singularities as well as the traditional movable singularity of the Cauchy 

kernel. An efficient approximate method of solving equations of this type is presented, based on the 

construction of a closed solution of a special form of this equation. A method of solving integral 

equations in the case of a single fixed singularity was presented in [l]. 

1. STATEMENT OF THE PROBLEM AND ITS REDUCTION 
TWO FIXED SINGULARITIES 

TO AN EQUATION WITH 

We consider the antiplane problem of the stress concentration around a crack 0 c x < 1, y = 0, 
--oo c z c +c= in a composite elastic space --oo< X, y, zc+oo, consisting of three perfectly 
adhering components: a half-space xc0, a layer Oc x c 1 and a half-space x > 1 (with 
respective moduli of elasticity G,, Gz and GJ. Without loss of generality we can assume that a 
shear load is applied directly to the crack edges, i.e. z,,(x, S) =-f(x), Oc x c 1. The 
mathematical problem is formulated as the following mixed boundary-value problem for the 
shear displacement function W(X, y) 

Aw(x,y)=O, O<y<+oo, ~<x<+oo, x+0, x+1 

G,w;(~.y)=G~~;W,y)r 0-z Y<+= 

Gzw;(l-O,y)=G,w;(l+O,y). O< yc+m 

w(-O, y) = w(+O, y), w(l-0, y) = w(l+O, y), 0 c y < +oo 

w(x,+O)=O, -=<X<O, 1 <X<+oo 

Gzw;(s.+O) = -f(x), 0 < x < 1 (1.1) 

To solve problem (1.1) we will use an extended procedure of the method of integral 
transformations [2]. We put w(x, +0)= G$p(.x), 0 c x c 1 and apply the Fourier sine- 
transformation to problem (1.1) 

w,(x) = jsinayNx.y)ctv 
0 
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which leads to the following one-dimensional problem 

w;(x)-u2wa(x)=-uG$p(x), -oo<x<+m, x+0, x+1 

(cp(x> = 0. --oD<x <o, l<x<+oo) 

w,W) = w,(+o), Wa( l-o) = w,( l+O) 

G,w&W=G2w&W), G,w&(l-O)=.G,w&(l+O) 

(1.2) 

Using the procedure [2] for solving discontinuous one-dimensional boundary-value prob- 
lems, we find that when 0 < x, 5 c 1 Green’s function for problem (1.2) can be represented in 
the form 

(-2a)G,(x,5) = e- alx-cl + A; 
( 
e-a(x+c) cosxc~ + e-a(2-x-S) cos XQ, + 2qe-2a ch o1(x - 5)) 

Aa 
=1-qe-2a, q = cos aa, cos m, (1.3) 

(G,+G2)cosrra0=G,-G2, (G3+G2)cos~~,=Gs-Gz 

We thus find that 

Gzwa(x) = -o;G,(x,S)cp(6)dS, O< xc1 
0 

Inverting the Fourier sine-transform and summing the weakly converging integrals using the 
expansion 

we obtain w(x, y). Imposing the boundary condition G,wi(x, +0)=-f(x) we arrive at the 
following integral equation for the unknown function g(x) 

Lcp = --+oPwt = f(x), x E [O, 11 

cos 7ccxo 
lcL(x,Q =&+-+ cosrrc+ +&(x,6) 

6+x (+x-2 
(1.4) 

R,(x,~)=cos~~a~F(x+~)-cosxalF(2-x-&+q 2(~-5)(4-(x-&~)-‘+ 
[ 

+F(2-x+&F(2-5+x)] 

F(x)= 5 q”(x+2k)_’ (1.5) 
k=l 

The aim of the following constructions is to develop an efficient approximate method for 
solving equations of type (1.4) with R,(x, ~)E@)([O, l]*). In the specific case (1.5) under 
discussion &(x, 5) is not only infinitely differentiable, but is even analytic. The proposed 
method is based largely on a previously obtained exact solution for a special case of Eq. (1.4): 
we first construct a solution of the integral equation 

/&+.5)9(5)d5 = f(x). x E [Qll 

Wx,S)=~+-+ cos kao 

5 
CoSXQ1 + ligx,E&) 

-x 5+x 5+x-2 (1.6) 
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with a specially chosen regular part Z$(x, ~)EC(-)([O, l]‘), and Eq. (1.4) is then solved with 

&(x9 5) =%(x9 5). 

2. CONSTRUCTION OF AN EXACT SOLUTION OF AN INTEGRAL EQUATION WITH 
TWO FIXED SINGULARITIES 

The construction of the exact solution is based on the selection and solution of a pair of 
mutually dual Riemann-Hilbert problems [3] for a semi-circle. 

Let’D=(z:Izlcl, Imz>O), T={t:ltl=l, O~argt<n). We denote by q,(z) and q,(z) a pair 
of functions that are analytic in the domain D and which satisfy the following boundary 
conditions 

Rdcp2 0) - v1 WI = Im[cp2 W + Wcpl WI = 0, - 1~ t < 1 

RUj 

k(t) =ctg* 2 ( 1 , -j<t<l-j, j=O,l (2.1) 

(O<Uj <l, j=O,l), Recpl(t)=O, r~r 

Suppose that the functions cp,(z) (j = 1, 2) are bounded as z + +l and that as z + 0 we have 
I z If cpj(z) + 0 (j = 1,2) for every E > 0. 

We put 

Re q*(t) = u(r), t E r (2.2) 

Im (P*(r) =-U(t), te I- (2.3) 

Assuming the function u(t) to be known and ~(1) to be unknown, and then the reverse, we 
arrive at a mutually dual pair of Riemann-Hilbert [3] problems (2.1), (2.2) and (2.1), (2.3). We 
assume that the functions u(t), u(t) satisfy the Holder condition on T(u, 2) E H) [3] with 
U(1) = U(-1) = 0. 

We first consider problem (2.1), (2.2). We introduce the notation 

(2.4) 

N,(r)=z+n&)A(J, -=<t<+- 

~(t)=coszaO, Octc+-; no(t)=cos7ca,, --ct<O 

Extendingthe definition of n(z) by the symmetries Q(z) = -n(T’), I z I> 1 followed by 
Q(~)= E~z), Imz CO, we arrive at the Riemann boundary-value problem for n(z), the 
solution of which reduces to the factorization of its matrix coefficient N,,(t) along the real axis 
(N,(t) = Z when It I = 1) 

N,(r) = N+(t)[N-(t)]--‘, -00 <t < +=a (2.5) 

(2.5) is factorized as follows [4]: 

N(z)= Z+y(z&. y(z) = l(z)cosna, -I(-Z)COSRU, 

27cil(z) = In z, -lc<argz<lt (2.6) 



716 N. G. Moiseyev and G. Ya. Popov 

Having solved the above Riemann problem we use the symmetry conditions on Q(z) to find 
that the general solution of the Riemann-Hilbert problem (2.1), (2.2) has the form 

where Q is an arbitrary real constant. We find from (2.7) and (2.8) that when t E I 

Imcp,(r)=a[l+2y(t)]- &r(t,M)$ 

1 + zr 
~(~~~) = [l+ YW - YWI~ -[Y(r)+Y(a~ 

(2.7) 

(2.8) 

(2.9) 

The kernel L&X, 5) defined by the relation 

2&(x,5) = icr)(exp(ircx), exp(irc&)) = ctg (~&X))1+y2(coslra0 -cosROl,)(~-XX)]+ 

+J+tg 
( 1 
:(5+X) [(~+x)cosna, +~2-5-xwmxgl (2.10) 

can be represented in the form (1.6) with 

h(j(z)=x--‘qcJ+)/2(1+qoz) ctt3 ( F-$). 

2q, =cos7Klt(j-cos7cu~, 4h,(z)=(2-z)ctg 2 

s-2 7 -’ ( 1 
(2.11) 

where the function $(z) is analytic in the strip -2 c Re z c 2j + 2, j = 0, 1. 
Hence, the solution of Eq. (1.6) with Z,,(x, 5) from (2.10) is equivalent to the following 

integral equation with kernel (2.9) 

+-;o(?,r)u(r)r-lh = v(t), t E r (2.12) 

with cp(x) = u(exp(i@), f(x) = u(exp(ix.x)). 

Theorem 1. Let the function u(t), t E r be a solution of integral equation (2.12). Then the 
complex potential Q,(z) from (2.8) is given by the formula 

cp2w b I ,czl =&I(Z), ZED 

the solution of boundary-value problem (2.1), (2.3), satisfying the condition 
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(2.13) 

Suppose that the functions q,(z), cp*(z) are a solution of boundary-value problem (2.1), (2.3) 
satisfying condition (2.13). Then u(r) = Recp,(r), t E r is a solution of integral equation (2.12). 

Proof. The first part of the theorem without condition (2.13) has already been proved. 
Condition (2.13) on the potential Q,(z) from (2.8) can be verified directly. 

We prove the second part of the theorem. To do this we represent the integral on the left- 
hand side of (2.12) as follows: -Im[lll, Ol~Q,(r)] = @)“l(l, Oll[@(r)+Q&)], t E r, where Q,(z) is 
the potential in (2.8). Let q,(z), (p*(z) be the solution of problem (2.1), (2.3). The definition of 
the vector 0(z) from (2.4) is extended to the rest of the complex plane by the method given 
above. Here 

2u(t) = ~~l,o~~[n+<t>-n-<t>], t E l- 

which enables us to represent the potential (2.8) as follows: 

(t + z)dz 
Q,(z) =&N(z) ,,L, N%[n'(I)-~701,0 

which is then calculated using the theorem of residues. We finally obtain the difference 
between the left- and right-hand sides of Eq. (2.12) in the form C(l+ 2?(r)), t E I where the 
pure imaginary constant 2iC is the left-hand side of condition (2.13). This proves the second 
part of the theorem. 

We now construct the solution of the Riemann-Hilbert problem (2.1), (2.3). We conformally 
map the domain D in the z-plane onto the lower half-plane of the s-plane (Ims CO). This 
mapping is carried out as follows: 

z-l 2 
s=s(z)= - , ( 1 1+8 

z+l 
z = Z(S) = - 

l-8 
(0 < args < 2n) 

We put 

@(@ = ‘PI (z(s)) I II (P2 (z(s)) 

Symmetrically extending the definition of 0(s) to the upper half-plane by 

Q(s) = diag{-l,l)w), Im s > 0 

we arrive at the following Riemann boundary-value problem: 

Q’(a)=@-(0)+2iu(z((r)) 1 , 
II 

-W<b<O 

a+ (a) = G(o)@- (CT), 0 < o < + 00 

G(a)=A(l-a,), O<o<l 

G(o)=A(l-a,), ~<Q<+w 

(2.14) 

(2.15) 

(2.16) 

A(a) = A cos m, -(l+ COSrKX) 
1 - cos xe, cos rux I 



718 N. G. Moiseyev and G. Ya. Popov 

the solution of which is sought in the class of functions that are bounded in a neighbourhood 
of the points s = 0, s = 00 and satisfy condition (P(S) I s - 1 r-+ 0 when s -+ 1 for all E > 0. 

The canonical matrix for solutions [3] of problem (2.16) 

G(o) = X+(a)fX-(@I-‘, O<O <+=J 

is constructed using results obtained by Khvoshchinskayat 

X(s)=T(i-cro)W,(ao,u,;s)Ei W-~,)W,(~O~;~) 

isin? 
1 1 }II I -1 1 

wj(Ct*P;s)= 

W~,j(a,PiS) Dsw,,j(a,P;s) 

Wz,j(a,P;S) 

j=O,= 

D,w = s(dw / ds) - (1 - Q-1 w 

w,,,(a&Q = -WC--_(a,P;s), w,,,(a,P;s) = w(a,P;s) 

w,,,@$;s) = w(p,a;s-‘1, w,,,(ol,P;s) = -WC-p,&-‘) 

w(a,fJ;s) = I-‘(a)l- 

-7c < arg(-s) < IL (2.17) 

Here P(r) is the Euler gamma function and *F, is the Gauss hypergeometric function. The 
identity in the first of the relations (2.17) is a consequence of the analytic continuation formulae 
for the corresponding hypergeometric functions and defines two different representations for 
the same matrix-function X(S). 

We need the following notation 

where D, is the differential operator from (2.17). 
The partial indices [3] of problem (2.16) are equal to zero. Problem (2.16) has a unique 

solution. Direct verification shows that this solution satisfies symmetry condition (2.15). 
Enforcement of condition (2.13) leads to a single solvability condition for Eq. (2.12). We 

formulate the final result for Eq. (1.6), (2.10) which is equivalent to (2.12). 

~~~eo~e~ 2. Equation (1.6) with kernel L&r, 5) from (2.10) and right”hand side f(x) E N has 
a solution in class ti if and only if the following solvability condition is satisfied 

(2.19) 

tKHVOSHCHINSKAYA L. A., The homogeneous Riemann boundary-value problem for two pairs of functions with 

piecewise-continuous matrices in the case of two or three singular points. Minsk, 1981. Unpublished paper. Deposited 

in VINITI, No. 5157-81. 
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If condition (2.19) is satisfied, then Eq. (1.6), (2.10) has a unique solution in this class which 
is given by the formulae 

cp(x)=4j M _&E, 4’cs msin-‘- 
0 ( 1 2 cost-coslu 

(2.20) 

with cp(O) = q(l) = 0. 
Let Wf’[O, l] be the space of functions q(x) that are absolutely continuous on the segment 

[0, l] and for which cp(O) = cp(l) = 0, q’(x) E L,(O, 1) is satisfied with a norm equal to the norm of 
q’(x) in L,(O, l), p > 1. 

We consider the equation 

(2.21) 

Theorem 3. When 1~ p c p’= min(ct;‘, a;‘}, the operator L, : W,c’)[O, l] + L&O, 1) is bounded 
and has a bounded inverse Z$ : L,(O, 1) + W,c”[O, 11. To prove this we first note that condition 
(2.19) is not satisfied when f(x)= 1 (the integral on the left-hand side of (2.19) is equal to 
X 7c(cos(xa, / 2) cos(7rcc, / 2))-‘). 

Thus the arbitrary constant which is inherent in the reconstruction of the right-hand side of 
Eq. (1.6) from the right-hand side of (2.21) is uniquely fixed by condition (2.19). The 
boundedness of the singular integral operators Z,, and Lj’ in these spaces is verified using 
appropriate results from [5,6]. 

As we show below, by having the exact solution of Eq. (1.6), (2.10) we can take its kernel to 
be the one in Eq. (1.4). This, as we shall see, is a key point in the method being proposed to 
solve this equation, The other key point is the construction of efficient formulae for inverting 
the operator L,, when its right-hand side is a polynomial, i.e. constructing spectral-type 
relations in the orthogonal polynomial method [2]. 

3. THE CONSTRUCTION OF AN EFFICIENT SOLUTION OF THE CHARACTERISTIC 
EQUATION WITH A POLYNOMIAL RIGHT-HAND SIDE 

We solve Eq. (2.21) when the right-hand side is a polynomial. Using formulae from Section 
2, we can express the solution in quadratures. However, these formulae are not suitable for 
numerical implementation. The problem of this section is to obtain representations for such 
solutions in the form of rapidly converging series. 

We consider the polynomial systems q,(x), p,(x), deg, p, = deg, q, = n (n = 0, 1, 2, . . . ) 
sequentially, starting with n = 0. They are defined by the relations 

(3.1) 

We construct functions q,(x) (IZ = 0, 1, . . . ) as solutions of the equations 

Lo% = P,(X). n=012 9 , .*** (3.2) 

The special choice of polynomials (3.1) for the right-hand side of (3.2) is dictated by the 
method to be used to construct the functions q,(x). We note that the choice of polynomials on 
the right-hand side of (3.2) does not restrict the generality of the construction because the 
solution for an arbitrary polynomial on the right-hand side of (3.2) can be constructed in an 
obvious manner from appropriate linear combinations of the functions (cp,(x)). 
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The method of constructing the system of functions (cp,(x)) in (3.2) is based on the succes- 
sive solution of Riemann boundary-value problems 

Q~(G)=@~(cJ)+2iq,+l(x(b)), III 0 , -00s o< 0 (3.3) 

Wo)=G(a)@,(o), 0s 6s +m, n=-l,O,l)... 

0 
y,‘((3)=~~(<T)t2ip,(x(cT)) III , 1 -00s oQ 0 (3.4) 

Y,‘.(a) = -G(a)Y;(a), 0 s o =S + 00, n = -1,o,t ,... 

in which 

ilcx’(s)=s-)/2(1-S)-1, OCargZC2It 

x(O)=0 (x(=)=1), O_*(s)=Y_,(s)=O 

We shall seek a solution of problems (3.3) and (3.4) in the same class as the solution of 
problem (2.16). the polynomial qn+1(x) is uniquely defined in terms of the polynomial p,(x) by 
the first relation from (3.1) and condition (2.19). The solution of Eq. (3.2) is obtained from the 
solution of problem (3.3) as follows: 

W,(x) =#a4 @!I ( +(-tgZq)+@;(-tgg) (3.5) 

The canonical factorization of the matrix coefficient of problem (3.4) 

-G(o) = Y+(o)[Y-M)]-1, 0 < 0 < -I-=. 

is constructed in the same way as the canonical factorization X(o) of the coefficient G(o) in 
(2.17) and has the following form 

(3.6) 

8(a)=diag cosy,isiny 1 1 
{ 

1 -1 }I I 
where the matrix-functions Wj(a, p; S) (j = 0, j = -) are defined in (2.17). The partial indices of 
the canonical factorization (3.6) are also equal to zero. 

The solutions of problems (3.3) and (3.4) are constructed in terms of one another as follows: 

a:(s) = ; [iO_‘X(0)q - V~Ca)x’(o)]da + iqn+, (k) k=O,l; 
Sk 

ium = Ids’ diag{l,-i} i 
{I 

44n+l(l) - ‘04n+lW 

0 I 
+~-~[Y~(~)+Y~(cr)jx’(o)do 

I 
n = -1, 0, 1, 2, . . . 

Y:(S)= $idY(a)b, +@z_,(o)x’(o)]do+p,,(k) 
Sk 

k=O,l; 

(3.7) 

ib,, =Hr1diag(l,-i){ilp”‘1)0p.‘o)Il-~~[~~_2(o)+O._2~~)]x’(o)do) 
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n = 0, 1, . . . 
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(3.8) 

diag{l, i}Hx,, = -J?X, Y(a)C’& 
0 

2mk tk=tg -, 
2 

k=O,l; So =o, SI =- (3.9) 

The numerical matrices H,, H, in (3.9) are non-degenerate, because otherwise the 
corresponding inhomogeneous problems would have non-trivial solutions in the class under 
consideration. 

The canonical matrix-functions X(S), Y(S) and functions (-s)-‘PI,,(S), x’(s) have the 
expansions 

s-lx(s) = diag(l,i}p; i f p{-(‘+rpb”2Xf~ 
r=O j=O 

s-ly(s) = diag(l,i)p; i 2 p~(-1+cr-Epk)‘2$J’ 
r=O j=O 

(_s)-l ma(s) = p; i 

r=O j=O 
(3.10) 

El =-l, PO =1-p,, p, =(1-S)-‘, Xfj 
=(,?$)j(i9“ 

which can be obtained using the analytic continuation formulae for the Gauss hypergeometric 
function ([7], formula 9.132(l)). We note that all series in (3.10) have a radius of convergence 
equal to unity. 

Expansions (3.10) enable us to obtain the following representations for @i(s) and ‘y,‘(s) 

cP,f(s) = diagIi.1) i 5 p~+(‘-e*~)‘2~~J) +idiag{l,fl} jzO pi”.f$), k=O,l (3.11) 
r=O j=O 

yzts) = diag(i, 1~ i f Pp1+WWr)‘2 z,,~ +idiag{l,fl} 2 ~i’~g$, k = 0.1 (kr) (3.12) 
r=O j=O j=O 

By expressing relations (3.7) using (3.11) and (3.12) we can represent the coefficients of 
expansions (3.11) in terms of coefficients of expansion (3.12) 

, h’,L.bo’ = -?- diag(1 -l)X(‘)a 
I-a, ' 

k.0 n 

,,(k,r) = _ 
n.J 

(3.13) 

h(kr) 
n.J+l-r =(j+1+ErU-a,)/2)-‘diag(l,-l}X~~~+,_,~~ +v::/), 

j=O,l,2,...; r=O,l; k=O,l 



122 N. G. Moiseyev and G. Ya. Popov 

r+l - 
x 0 1 ’ diag{l,O)f$;+,+r + 

2 
diag(1, -1)~‘~~~’ 

n.J II 
j+(l-E,ak)/2 

H,=ie,i $ 
k=O 

Xfi’ 
r=O j=O j+(l-&,ak)/2 ’ 

There are similar representations (from (3.8)) for the coefficients of the expansions of the 
Y:(s) in (3.12) in terms of the coefficients of expansions (3.11) for the 0i-J(~). From (3.4) these 
relations enable us to find sequentially the coefficients of expansions (3.11), starting with 
IZ = -1, and (3.12), starting with n = 1 

c Y_:(S)=O,Y~(S)ri ;; I- II) . 

The values of the polynomials q,+1(x) at x = k (k = 0, 1) which occur in representation (3.13) 
are uniquely defined by condition (2.19) 

q”+,(k)=r, +&,d,f,b. k=O,l; A$+-, =+(x)& 

A$ =~~llO,lljfn(,~), j=l,2 ,...; IT* rn = 

j+(l-e,ak+v)l* 

k=o r=O V=o j=o j+(l-&,ak +v)/i? m=O 

Here we have used 

(3.14) 

4n+l (x(s)) = Ilo, 111 j;. fi$‘PP (3.15) 

The polynomial p,,(x) is obtained from (3.1) in terms of q,_,(x) except, generally speaking, 
for an arbitrary constant. 

In accordance with (3.5) and (3.11) the solutions of Eqs (3.2) (h=O, 1, 2, . . . ) have the 
following representations 

(P”(X)= i sin: ( 1 
‘-Wr OD 

r=O 
jFo cpL:f) sin2j $f = 

= i. ( ,,,g-a’Er i. qqi” cos*j y 

~~~~)=(~~,l~)ti$“, j=O,1,2...; k,r=O,l 

(3.16) 

where the series in (3.15) and (3.16) have unit radii of convergence, just like (3.11) and (3.12). 
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4. CONSTRUCTION OF AN APPROXIMATE SOLUTION OF THE INTEGRAL 
EQUATION OF THE PROBLEM 

The preceding sections enable us to proceed directly to the approximate solution of integral 
equation (1.4). All constructions will be performed subject to the condition 

Lcp=o, c+-lE w;‘)[o,l], p>l*cp=O (4.1) 

This condition will be satisfied if the operator L is strictly positive, i.e. 

(Lcp,(p)>O, cp*o, (PE w;‘)wl, P>l 

(cp*f) = i Wx)f(xW 
0 

(4.2) 

This is in fact the case for the operator L in Eq. (1.4), (1.5) because (Lcp, cp) is the energy 
integral for problem (1.1) in which the boundary condition G,wi(x, 0)=-f(x), xe[O, l] is 
replaced by w(x, 0) = G;‘cp(x). 

We will describe the scheme for the approximate solution of Eq. (1.4) applied to Eq. (1.4), 
(1.5). 

Later constructions are based on the representation 

(L-b,o=R~=~R(x.S)B(S)dS (4.3) 

where L, is the operator from (2.21), together with the subsequent equivalent regularization 

tp+&‘Rq=&‘f (4.4) 

In the case of (1.5) the kernel R(x, 5) in (4.3) can be represented (see also (2.11)) by a 
Taylor series 

-(-l)icos~a,)(l-~-~)i-‘, j=1,2,... 

p’,“,‘_, = (2go)‘+{(2m) - sq(l + 2@(q,2m - &2)) (4.5) 

p$iA_, =(1-2-2m)~(2m)-1+q2s-2mcb(q,2m-s,~), m=l,2,...; s=O,l 

where the functions 5 and Q are given by formulae 9.522(l) and 9.550 from [7]. The rate of 
convergence of series (4.5) for x, k E [0, l] is given by the relations 

limb;!)l”j =(2k+l)-‘, k=O,l (4.6) j-m 

Equation (4.4) is a Fredholm equation of the second kind. It can be shown (see (4.1), (4.5) 
and (4.6)) that it has a unique solution in Wf)[O, l] (1 cpcp’) [8]. The following constructions 
are justified by the general theory of approximate methods for solving equations of the second 
kind [8]. 

Replacing the kernel R(x? 5) by a partial sum of series (4.5) 
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we construct an approximate solution 8, of Eq. (4.4) (and hence of (1.4), (1.5)) as a solution to 
the following equation with degenerate kernel 

8, + L$R,,CJ, = &‘f (4.7) 

having first transformed the kernel to the form 

(the polynomials &x) (k = 0, 1,2, . . .) are defined in Section 3). 
We seek a solution of Eq. (4.7) in the form 

e,(x) = &'f + 5 B$‘cp,(x) 
m=O 

(the functions cpj(x) (j=O, 1, 2, . . . ) are defined in Section 3 ((3.1), (3.11) and (3.16)). 
Proceeding as in [9], we find the following finite system of linear algebraic equations for the 
unknown coefficients of this representation 

To find the matrix elements of this system it is necessary to evaluate integrals of the form 
(cp,,, p,,). To do this we make a change of variables n = x(s). Using (3.1) we obtain 

Splitting the range of integration into two, from 0 to -1 and from -1 to -00, and then using 
the appropriate local expansions from (3.14)-(3.16), we find that 

(%*&I) = -Y.,&) 

z j+l+(v-epk)l2 . f: 
j+l+(v-erak)/2 8=o 

(26 + v + l)~::~+v+,(~$?~i 

where, as in (3.15) (3.16) (3.11) and (3.12) the radius of convergence of the series y,,,(z) is 
equal to unity. 

The rate of convergence of the approximate solution constructed in this manner is given by 
the estimate 

II II (p-0, wc,, c6,,, 6, =62-“, 
P 

which follows from (4.6). 
In the more general case when RL(x, 4) EC(“)([O, 11’) and condition (4.1) is satisfied, the 

solution is constructed using the same procedure. If the approximation to R,,(x, 5) is taken in 
the form of a partial sum of an appropriate series of classical orthogonal polynomials, as in the 
example 

n n 

R,(x&)=~~~ jTo f$j~k(1-2x)~(l-2& _ _ 
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(where T,(X) are Chebyshev polynomials of the first kind and pkj are Fourier coefficients of 
the double series expansion of R(x, 5) for the given polynomials), the sequence of estimates 
for the rate of convergence 6,will satisfy the property that for every natural number m the 
sequence (6,n”, n = 1,2, . . .) is bounded. 

All the constructions of this paper were performed subject to the condition 

~~0~xa~~c1, lcosrca,lcl (4.8) 

These restrictions can be made less rigorous only one of the inequalities (4.8) need be strict. 
The procedure for solving Eq. (1.6) (2.10) for the four exclusive cases remains unchanged. 
The only change is in the formulae for factorizing the matrix-functions G(S), which is 
performed as in the previously-cited paper by Khvoshchinskaya. 
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